68035 # Cataclastic Anorthosite 21 grams Figure 1 a, b: Front and back of 68035. Scale is in cm. S72-40517and S72-40516. #### Introduction 68035 was picked up separately from the surface adjacent to soil sample 68500 and rake sample 68510. It contains a glass-coated white anorthosite, but the shiny glass coat is reported to have had a blue-green sheen to it. Micropoikilitic impact melt breccia surrounds the white anorthosite clast (figure 3). There is a thin section of each lithology – but no petrographic description nor mineral analyses. #### **Chemistry** The glass coating has been analyzed by See et al. (1986) and Morris et al. (1986) and the interior white rock has been roughly analyzed by See et al. (table). #### Radiogenic age dating Not ## Cosmogenic isotopes and exposure ages Rancitelli et al. (1973) determined the cosmic-ray-induced activity of 22 Na = 74 dpm/kg., 26 Al = 211 dpm/kg. ### **Processing** The bulk sample is in two pieces. There are two thin section (each different). This thing kind of reminds me of a cheese sandwich. Figure 2: Photomicrograph of thin section of 68035 by C Meyer. 2 mm across Table 1. Chemical composition of 68035 | Table 1. Chemical composition of 6 | | | | | | | |---|--------------------------------|----------------------------|-----------------------------|-------------------------|--|--------------------------| | reference
weight | glass
Morris8
See87 | 7 | Rancite | lli73 | anor
See87 | | | SiO2 %
TiO2
Al2O3
FeO
MnO | 44.5
0.4
25.91
5.88 | (b)
(a)
(a)
(a) | | | 45.29
0.15
31.87
2.18
0.04 | (b)
(b)
(b)
(b) | | MgO
CaO
Na2O
K2O
P2O5
S %
sum | 7.54
14.5
0.48
0.09 | (b)
(b)
(a)
(a) | 0.073 | (c) | 1.91
17.77
0.64
0.06 | (b)
(b)
(b)
(b) | | Sc ppm
V | 6.6 | (a) | | | | | | Cr
Co
Ni
Cu
Zn
Ga
Ge ppb
As
Se
Rb
Sr
Y
Zr
Nb
Mo
Ru
Rh
Pd ppb
Ag ppb
Cd ppb
In ppb
Sn ppb
Sb ppb
Te ppb | 650
31
5.08 | (a)
(a)
(a) | | | | | | Cs ppm
Ba
La | 290
7.09 | (a)
(a) | | | | | | Ce
Pr | 19.8 | (a) | | | | | | Nd
Sm
Eu | 3.24
1.19 | (a)
(a) | | | | | | Gd
Tb
Dy
Ho
Er | 0.71 | (a) | | | | | | Tm Yb Lu Hf Ta W ppb Re ppb Os ppb Ir ppb Pt ppb | 2.38
0.36
2.39
0.33 | (a)
(a)
(a)
(a) | | | | | | Au ppb
Th ppm
U ppm
technique: | 1.89
0.52
<i>(a) INA</i> | (a)
(a)
<i>A, (b</i> | 0.91
0.23
), (c) rad | (c)
(c)
liation | count. | | #### References for 68035 Butler P. (1972a) Lunar Sample Information Catalog Apollo 16. Lunar Receiving Laboratory. MSC 03210 Curator's Catalog. pp. 370. Hunter R.H. and Taylor L.A. (1981) Rust and schreibersite in Apollo 16 highland rocks: Manifestations of volatile-element mobility. *Proc.* 12th Lunar Planet. Sci. Conf. 253-259. LSPET (1973b) The Apollo 16 lunar samples: Petrographic and chemical description. *Science* **179**, 23-34. LSPET (1972c) Preliminary examination of lunar samples. *In* Apollo 16 Preliminary Science Report. NASA SP-315, 7-1—7-58. Morris R.V., See T.H. and Horz F. (1986) Composition of the Cayley Formation at Apollo 16 as inferred from impact melt splashes. *Proc.* 17th Lunar Planet. Sci. Conf. in J. Geophys. Res. **90**, E21-E42. Rancitelli L.A., Perkins R.W., Felix W.D. and Wogman N.A. (1973) Lunar surface and solar process analyses from cosmogenic radionuclide measurements at the Apollo 16 site (abs). *Lunar Sci.* **IV**, 609-612. Lunar Planetary Institute, Houston. Ryder G. and Norman M.D. (1980) Catalog of Apollo 16 rocks (3 vol.). Curator's Office pub. #52, JSC #16904 See T.H., Horz F. and Morris R.V. (1986) Apollo 16 impact-melt splashes: Petrography and major-element composition. *Proc.* 17th *Lunar Planet. Sci. Conf.* in J. Geophys. Res. **91**, E3-E20. Sutton R.L. (1981) Documentation of Apollo 16 samples. In Geology of the Apollo 16 area, central lunar highlands. (Ulrich et al.) U.S.G.S. Prof. Paper 1048. Figure 3: 68035 had a penetrating fracture down the middle. These are to two halves. S72-40518 Figure 4: Processing photo of 68035. As you can see, the anorthosite clast is not very thich. Cube is 1 cm. S82-27856